选择大数据 Python 的5大理由
来源:海牛大数据 时间:2021-01-26 14:38:25 编辑:简单
在大数据领域中,在另一种语言之上选择一种编程语言是特定于项目的,并且取决于项目目标。但是,当我们考虑将编程语言用于大数据开发阶段时,Python和大数据的目标可能是非常一致的。
这个决定非常重要,因为一旦开始使用一种语言开发项目,就很难用另一种语言进行移植。此外,Python不仅限于大数据,还广泛用于其他技术领域,实用性非常高。
Python完美适合大数据的5个原因
Python被认为是处理大数据的最佳数据科学工具之一。当需要在数据分析与Web应用程序或统计代码与生产数据库之间进行集成时,Python和大数据是最合适的选择。
1.功能强大的科学包装
Python大数据组合以其强大的库程序包为后盾,这些库程序包满足分析和数据科学的需求,使其成为大数据应用程序中的流行选择。
2.与Hadoop兼容
Hadoop是最好的大数据工具之一。由于Python的大数据是兼容的,因此比较相似的Hadoop和大数据也就是彼此的同义词。因此,Python已与Hadoop内在兼容,以处理大数据。Python由Pydoop软件包组成,该软件包可帮助访问HDFS API并编写Hadoop MapReduce编程。除此之外,Pydoop还支持MapReduce编程以最小的努力解决复杂的大数据问题。
3.简单易学
Python易于学习,因为它通过其功能抽象了许多东西,可以使用户编写更少的代码行。除此之外,它还具有脚本功能。Python结合了用户友好的功能,例如代码可读性,简单的语法,自动识别和数据类型关联以及易于实现。
4.可扩展性
当您处理海量数据时,可伸缩性非常重要。与R,MatLab或Stata等其他数据科学语言不同,Python的速度要快得多。尽管最初对它的速度有所抱怨,但是使用Anaconda时,其速度性能有了很大提高。这使得Python和大数据能够以更大的灵活性相互兼容。
5.大型社区支持
大数据分析通常处理复杂的问题,需要社区的支持来解决。Python作为一种语言,拥有庞大而活跃的社区,可帮助数据科学家和程序员在编码相关问题上提供专家支持,这也是其流行的另一个原因。
海牛大数据专注于大数据课程开发及培训,"因为专注,所以专业"。如果您想要了解更多大数据的知识,您可以浏览我们的网站,我们会为您提供更专业服务。